Get Dataset
Retrieves details of a dataset including its images and metadata.
Common Properties
- Name - The custom name of the node.
- Color - The custom color of the node.
- Delay Before (sec) - Waits in seconds before executing the node.
- Delay After (sec) - Waits in seconds after executing node.
- Continue On Error - Automation will continue regardless of any error. The default value is false.
Inputs
- Connection Id (String) - Connection ID from the Connect node (optional if API Key credentials are provided directly).
- Dataset ID (String) - ID of the dataset to retrieve (from Create Dataset node).
Options
- API Key - Leonardo AI API key (optional if using Connection ID).
Outputs
- Response (Object) - Dataset details including:
- Dataset ID
- Name
- Description
- Created timestamp
- Updated timestamp
- Dataset images array with:
- Image ID
- Image URL
- Upload timestamp
How It Works
The Get Dataset node retrieves complete information about a dataset. When executed, the node:
- Validates the dataset ID is not empty
- Sends a request to Leonardo AI API to fetch dataset details
- Returns the dataset object with all images and metadata
Requirements
- Valid Leonardo AI API key (via Connection ID or credentials)
- Valid dataset ID from a Create Dataset node
Error Handling
The node will return specific errors in the following cases:
- Empty dataset ID - "Dataset ID cannot be empty. Please provide a valid dataset ID."
- API error - "Failed to retrieve dataset. API response:
{details}" - Dataset not found - API returns error if dataset doesn't exist
Usage Examples
Check Dataset Contents
Verify what images are in a dataset:
- Get Dataset with the dataset ID
- Extract the dataset_images array from response
- Check image count and URLs
- Verify all expected images are present
Count Images Before Training
Check if dataset has enough images for training:
// After calling Get Dataset
const dataset = $.response[0];
const imageCount = dataset.dataset_images.length;
if (imageCount >= 5) {
// Proceed with model training
} else {
// Upload more images first
}
List Dataset Images
Get all image URLs from a dataset:
const dataset = $.response[0];
const images = dataset.dataset_images;
images.forEach(image => {
console.log(`Image ID: ${image.id}`);
console.log(`URL: ${image.url}`);
console.log(`Created: ${image.created_at}`);
});
Verify Dataset Before Model Creation
Check dataset is ready for training:
- Get Dataset to retrieve details
- Verify dataset has 5+ images
- Check that all images have valid URLs
- Proceed with Create Model if ready
Dataset Audit
Review dataset metadata:
const dataset = $.response[0];
console.log(`Name: ${dataset.name}`);
console.log(`Description: ${dataset.description}`);
console.log(`Created: ${dataset.created_at}`);
console.log(`Last Updated: ${dataset.updated_at}`);
console.log(`Total Images: ${dataset.dataset_images.length}`);
Usage Notes
- Use this to verify dataset contents before training models
- The dataset_images array contains all images uploaded to the dataset
- Image URLs can be used to download or preview the training images
- Useful for debugging dataset issues
- Check image count to ensure sufficient training data (5-15 images recommended)
- Timestamps help track when the dataset was created and modified
- The response structure is an array with one dataset object
- Access dataset properties via
$.response[0] - Can be used to build dataset management dashboards
- Helpful for auditing and organizing your datasets